
Primary School Students Programming with Real-Time
Environmental Sensor Data

Hussel Suriyaarachchi
Augmented Human Lab

The University of Auckland
Auckland, New Zealand

hussel@ahlab.org

Paul Denny
School of Computer Science
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Juan Pablo Forero Cortés
Augmented Human Lab

The University of Auckland
Auckland, New Zealand

juan@ahlab.org

Chamod Weerasinghe
Augmented Human Lab

The University of Auckland
Auckland, New Zealand
chamod@ahlab.org

Suranga Nanayakkara
Augmented Human Lab

The University of Auckland
Auckland, New Zealand
suranga@ahlab.org

Figure 1: A) Our plug-and-play sensor toolkit tailored for use by young children; B) Seamless access to exploring physical
phenomena and integrating real-time data with Scratch; C) Students engaging in free exploration with the toolkit.

ABSTRACT
Programming is now introduced as an essential skill at a very young
age, often through block-based programming environments. Inter-
action with programs created using such platforms typically occurs
through the use of keyboard and mouse. Incorporating environmen-
tal data as real-time input to programs through physical computing
devices can deliver an engaging programming experience that fos-
ters creativity. However, using such devices with block-based envi-
ronments often requires significant technical configuration, which
can be challenging in the classroom, especially for very young
learners. In this paper, we describe our design, development and
use of a sensor toolkit and a companion Scratch extension that is
very easy for young students to use. The toolkit allows students to
focus on constructive exploration while providing teachers with
an easy way to incorporate sensor-driven programming lessons in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACE ’22, February 14–18, 2022, Virtual Event, Australia
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9643-1/22/02. . . $15.00
https://doi.org/10.1145/3511861.3511871

a time-constrained classroom setting. We deployed our toolkit in
a primary school classroom with 19 students aged between 7 and
9, and two teachers who were introducing sensor-driven program-
ming for the first time. We report how these young students used
our toolkit to control actions in their programs, their post-session
views of programming as an interesting and creative task, and the
teachers’ perspectives of using the toolkit with young learners.

CCS CONCEPTS
• Social and professional topics→Computing education; •Hard-
ware → Sensor devices and platforms.

KEYWORDS
Scratch, Sensors, Kiwrious, Real-time, Creativity, Block-based pro-
gramming, Physical Computing, Computational Thinking, Com-
puter Science Education

ACM Reference Format:
Hussel Suriyaarachchi, Paul Denny, Juan Pablo Forero Cortés, Chamod
Weerasinghe, and Suranga Nanayakkara. 2022. Primary School Students
Programming with Real-Time Environmental Sensor Data. In Australasian
Computing Education Conference (ACE ’22), February 14–18, 2022, Virtual
Event, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3511861.3511871

https://orcid.org/0000-0002-8026-2523
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0002-8402-1161
https://orcid.org/0000-0001-7441-5493
https://doi.org/10.1145/3511861.3511871
https://doi.org/10.1145/3511861.3511871
https://doi.org/10.1145/3511861.3511871

1 INTRODUCTION
Computing is now commonly taught at the primary school level,
with many countries developing and adopting national curricula
[8, 14, 15, 43]. As an increasing number of children learn to code,
there has been a surge of interest in developing approaches and
tools that are suitable and effective for students of various ages.
Indeed, a recent survey of computing educators by Denny et al.
revealed a strong desire for finding tasks that are both engaging
and effective in computing classrooms [12].

Block-based programming environments, like Scratch [39] and
Blockly [18], are very popular at the primary school level, as they
provide helpful visual cues to students when constructing programs
[52]. Scratch is designed to support learners between the ages of
8 and 16 and its simplified counterpart, ScratchJr, targets learners
between 5 and 71. Statistics show that the age distribution for
students new to Scratch peaks at 12, with relatively few students
between the ages of 7 and 92.

A wide range of physical computing devices have also made
their way into classrooms to provide an engaging experience for
young learners. Popular examples include the BBC micro:bit [45]
and Lego Mindstorms [27], both of which provide options for drag-
and-drop block-based coding. Scratch also provides an extension
framework, allowing third-party developers to design blocks that
can be used to interface with external hardware. Sentance et al.
describe the benefits of physical computing in the classroom, high-
lighting natural opportunities for collaboration and for unleashing
student creativity [44]. Indeed, Geldreich et al. found that ‘creating’
was the most common theme expressed by primary school students
when asked to talk about programming [19], a phenomenon the
authors attribute to the recent growth of the maker movement [42].

However, especially for very young learners, programming phys-
ical computing devices using block-based environments can present
practical challenges. From the teachers’ perspective, Tyrén et al.
[49] highlight a number of concerns for classroom deployment,
including the need for some devices to be flashed prior to use, and
the difficulty in asking a classroom of young students to follow
technical configuration instructions. Such concerns are particularly
problematic when teaching sessions are limited in time. Flannery
et al. also report that young children using Scratch often struggle
to enter sensible parameter values into variable blocks [17], which
can be problematic when specific values are needed to correctly
control hardware. Physical computing tools need to be easy for
young students to use, so that they can focus on constructive explo-
ration and creativity, and easy for teachers to deploy and support
in time-constrained classrooms.

In this practitioner paper, we describe our design, development
and deployment of a sensor toolkit that provides real-time environ-
mental data as input to Scratch programs. We have designed the
toolkit to be very easy to use, essentially plug-and-play, to simplify
classroom deployment. To promote student creativity, we support
a range of sensors that measure different physical phenomena,
including humidity, surface temperature, total volatile organic com-
pounds, visible light, and conductance. We see this connection to

1https://scratch.mit.edu/parents/
2https://scratch.mit.edu/statistics/

the environment as critical to promoting student interest. As Shee-
han notes in his recommendations for the design of programming
environments for children [46], the important thing is to provide an
environment that has points of contact with children’s current un-
derstanding. While the concepts of programming may be new and
unfamiliar to novices, interaction with the physical environment
through sensors draws on students’ everyday experiences.

We describe our development of the extension to integrate the
sensors with Scratch, and our design of the custom Scratch blocks
to be suitable for use by young students. We report our experience
deploying the toolkit for the first time in a short 60-minute class
session, alongside the two teachers who regularly teach the class,
with 19 students between the ages of 7 and 9 working in pairs. We
explore the following questions:

(1) Which sensors do students prefer, and how do they use the
sensor data to control the action in their programs?

(2) Upon completing the session, do students view programming
as interesting, and do they see it as a creative endeavour?

(3) What opportunities do teachers see in using the toolkit for
programming instruction for young children?

Given the importance of teacher acceptance for successful adop-
tion of technology in the classroom, we explore the perceptions of
teachers with no prior experience using the toolkit.

2 RELATEDWORK
Recent advances in low-cost hardware and the development of
suitable programming environments for children have led to greater
use of physical computing in primary school classrooms [23]. In
their seminal work on constructionism, Papert and Harel argue
that learning happens most readily when students are consciously
engaged in constructing a ‘public entity’, which is real and visible to
others [36]. Physical computing lends itself to such constructionist
learning, as it involves the combination of software and hardware
to build interactive systems that sense and respond to the real world
[5]. In addition to the development of technical skills, tangible and
physical computing environments can have very positive effects on
student motivation, collaboration and active learning, as students
work together in visible ways [24, 32, 44, 48].

Although a variety of hardware-based tools, including robots,
programmable toys and microcontrollers, have been used in com-
puting classrooms for decades, age-appropriate tools are needed
for very young students. Younger children can find programming
difficult when the instructions are too low-level and thus programs
require significant decomposition, or when the instructions lack
visible outcomes and immediate feedback [17]. In their guidelines
for designing construction kits for children, Resnick and Silverman
advocate for a ‘low floor and wide walls’, indicating that it should
be very easy for students to get started, while providing flexibility
for creating sophisticated projects [40]. Similar work by Sheehan
presents several recommendations for the design of programming
environments for children aged between 6 and 10, including that
the environment should be usable in a group situation, to facilitate
collaboration, and provide high-level instructions that map to the
changes students want to see or control in their programs [46].

https://scratch.mit.edu/parents/
https://scratch.mit.edu/statistics/

2.1 Sensors as input devices
A common method of interaction with running programs is direct
input via the keyboard or mouse. Block-based environments suit-
able for young learners, like Scratch [39], provide ‘Events’ blocks
that respond to such input by triggering scripts to run when a par-
ticular key is pressed or if the mouse clicks on a sprite. Although
such user-initiated inputs are intuitive for a student who is already
using the mouse and keyboard, programs are limited to responding
only to direct user actions. Sensors that measure physical phenom-
ena can provide real-time streams of data that serve as dynamic
input to programs, and can be particularly motivating for children.
For example, Wang et al. designed a tangible programming tool for
children, called T-Maze, that involves the construction and solution
of simple mazes [11]. The tool incorporates temperature and light
sensors that provide input to a simulation program, and students
interact with these sensors to solve the mazes. In an evaluation
with children aged between 5 and 9, almost all of them showed par-
ticular interest in the sensors, and “once they saw the sensors, they
could not help trying to trigger them” [50]. Physical sensors can
also use design aesthetics to convey their purpose in a meaningful
way for young students. For example, the KIBO robotics kit uses an
ear-shaped design for a sound sensor, and an eye-shaped design for
a light sensor, allowing children to leverage their existing symbolic
knowledge when interacting with the physical world [3].

Microcontroller kits are a popular solution for enabling the con-
nectivity and use of generic sensors as program inputs. One such
example is the Arduino [33], which supports a variety of sensors
through onboard digital pin attachments. However, students of-
ten encounter difficulties when using microcontroller-based tools
as they require knowledge of wiring, pin configuration and serial
communication. Prerequisites and barriers such as these exist with
the Arduino and have been explored in prior work by Booth and
Stumpf [6], and Heo [22]. In 2015, the BBC launched the micro:bit
[1, 44], a microcontroller kit tailored for educational use. With built-
in sensors, it avoids the complexities of Arduino-like devices and
offers superior ease of use when programming. However, there
remain some documented pitfalls for classroom deployment of the
micro:bit, such as its need to be flashed prior to use and the diffi-
culty of guiding young students through certain procedures such
as Bluetooth pairing [49]. With the rapid growth of computing as a
subject at the primary school level, toolkits must be reliable, simple
and quick to deploy in time-constrained classrooms, especially for
teachers who may lack confidence with digital technology [26].

2.2 Block-based programming and creativity
Block-based programming environments provide clear visual cues
for connecting blocks to help students construct programs [52].
Across a wide variety of approaches, there is substantial evidence
for the value of such environments for developing computational
thinking skills in young learners [10, 21, 47, 53]. Deschryver and
Yadav further argue that fostering computational thinking skills
can help to promote creative thinking [13]. In general, block-based
programming is particularly suitable for young learners as the
complexity of syntax is removed. This allows students to focus
on being creative while avoiding the common difficulties relating

to text-based error messages [2]. Recently, frame-based program-
ming editors have been proposed to ease the transition, as students
mature, from block to text-based programming [7, 38].

Scratch is currently the most widely used block-based program-
ming platform [51], catering primarily for children between the
ages of 8 and 16. ScratchJr is a simplified version of Scratch, de-
signed to support younger learners from ages 5 to 73. In describing
the design of ScratchJr, Flannery et al. outline several challenges
that young children encounter when using Scratch [17]. These in-
clude decomposing programs into low-level instructions that lack
visible feedback, and determining appropriate parameter values for
blocks that allow arbitrarily large inputs. ScratchJr thus employs
high-level instructions, and input-constrained blocks, which stu-
dents typically use to animate the movement of sprites or characters
on the screen. Bers argues that such environments are ideal for sup-
porting new pedagogies that teach computational concepts, while
supporting personal expression and fostering creativity [4]. ‘Mo-
tion’ blocks, which are used to control the movement of sprites and
characters for creative story-telling, tend to be the most commonly
used blocks across all age ranges using ScratchJr [37].

Adapting block-based programming environments to accom-
modate hardware input, such as environmental sensor data, usu-
ally involves installing offline software components to support
the new functionality. For example, integrating supported devices
into Scratch requires initial set up via utility software4. In addi-
tion, appropriate blocks must be available within the environment
for reading sensor data. Scratch does not provide such blocks by
default, requiring the development of custom environments that
are modifications of Scratch (e.g. [16]), or the use of the Scratch
extension framework which allows custom blocks to be loaded into
the editor alongside standard Scratch blocks. This latter approach
is the one we adopt in the current work.

In 1972, Seymour Papert presented a grand vision for the use of
technology in education in which students were empowered to cre-
ate exciting projects by “providing them access to computers with
a suitably clear and intelligible programming language and with pe-
ripheral devices capable of producing on-line real-time action” [35].
In this work, we explore the artefacts that students create, and their
views on creativity in programming, when using a sensor-based
physical toolkit for measuring real-time environmental phenomena
within a block-based programming environment.

3 SENSOR DESIGN & DEVELOPMENT
We developed a toolkit consisting of five sensor units that plug
directly into the USB port and measure various aspects of the en-
vironment, including humidity, surface temperature, total volatile
organic compounds (tVOC), visible light, and conductance. Our
choice of sensors was informed by prior work that has explored
the use of sensor technology in science classrooms for teaching
scientific inquiry skills and computational thinking [9, 20]. Since
such phenomena occur universally and are easily manipulatable,
they are ideal for use within the confines of a classroom. In this
section, we outline the technical specifications of the hardware and
describe our aesthetic design choices for the sensors.

3https://www.scratchjr.org/
4https://en.scratch-wiki.info/wiki/Scratch_Link

https://www.scratchjr.org/
https://en.scratch-wiki.info/wiki/Scratch_Link

Figure 2: A) Temperature; B) Air Quality; C) Light, D) Conductance, E) Humidity. 1) Micro-Controller Unit, 2) AR Marker, 3)
Analog Module Conductivity Sensor, 4) SHTC3 Humidity Sensor, 5) MRT311 Temperature Sensor, 6) SGP30-2.5K VOC Sensor,
and 7) SI1133-AA00-GMR Light Sensor

3.1 Enabling plug-and-play support
Considering the plug-and-play requirements, we designed the sen-
sors to be powered directly from a standard Micro-USB port @5V.
The sensors implement a USB-CDC(ACM) (Communications De-
vice Class, Abstract Control Model) interface to emulate a serial
port on the host computer. The Web Serial interface provides di-
rect access to this port through the host computer’s web browser,
achieving a device-agnostic approach for communicating with our
sensors. The communication is straightforward; once initialised
the sensor will start transmitting data packets, each 26 bytes in
size. The packet consists of a header, an identifier byte denoting the
sensor type, 2 to 16 bytes of data depending on the sensor type, and
a footer. Additionally, each sensor exposes two more USB interfaces,
a Device Firmware Update interface for updates in the field, and a
WebUSB interface. TheWebUSB capability enables the web browser
to automatically open a pre-defined URL stored in the sensor upon
its connection. Thus, users experience a seamless transition from
connecting the sensors to using them, as visualised in Figure 3.

3.2 Hardware development of the sensors
We tried to maximise the intuitiveness and usability of the system
by creating five specialised sensor modules (Figure 2). The elec-
tronics of each sensor type were designed to measure one physical

Figure 3: A standard Micro-USB cable makes for a simple
connection between sensor and host device. Upon connec-
tion, the sensor type is automatically detected and data read-
ings become available in the web browser.

property. Every sensor incorporates an ARM Cortex-M0+ Micro-
controller Unit (MCU) @48MHz with an integrated USB 2.0 Inter-
face (i.e., ATSAMD11D14A-MUT). In the event of an electrostatic
discharge or short-circuit, both the sensor and the user’s device
are protected by transient voltage suppression diodes (i.e., USBLC6-
2SC6) at the USB data lines and a ressetable Fuse @8V/500mA (i.e.,
0ZCJ0050FF2G) tied to the power line. All the sensors are compliant
with the AS/NZS CISPR-32:2015 regional standard for electromag-
netic compatibility. The circuits of the Humidity, Conductance, Tem-
perature and Light sensors are powered through a linear regulator
@3V3/300mA (i.e., MIC5504-3.3YM5-TR) tied to the USB power pin
@5V. The VOC sensor uses a linear regulator @3V1/300mA (i.e.,
TLV70231DBVR). The Light sensor incorporates an ambient optical
sensor @450/525/625nm (i.e., SI1133-AA00-GMR). The VOC sen-
sor features a digital multi-pixel gas sensor (i.e., SGP30-2.5K) with
0.2% accuracy in both the H2 and Ethanol signals. The Temperature
sensor offers a contact-less measurement [−30 to 100C◦]@0.5C◦

accuracy through a thermopile infrared sensor (i.e., MRT311). The
Humidity sensor readings are enabled by a digital relative humid-
ity(RH) sensor @2% RH accuracy (i.e., SHTC3). Finally, the Conduc-
tance sensor incorporates a custom analog circuit consisting of a
voltage divider with switchable resistors, reverse and over-voltage
protection, and a RC low pass-filter.

3.3 Form factor design
Each sensor has a unique shape reminiscent of the natural phenom-
ena being measured (e.g., the Light sensor is shaped as a tiny sun,
and the Temperature sensor is shaped as a thermometer). This aes-
thetic design helps to convey the purpose of each sensor to the user,
improving accessibility for young children [3]. Additionally, the
unique shape in combination with the unique AR markers printed
on each sensor (e.g. see Figure 2:2) provide an opportunity in future
work to develop mixed-reality applications. Finally, the back of
each sensor is populated with a glossy and colourful sticker that
helps in identifying the sensor and contributes to a consistent look
and feel.

4 SOFTWARE IMPLEMENTATION
The technical architecture of the Scratch platform consists of a
Node.js backend called the Scratch Virtual Machine (VM) and a
React-based Graphical User Interface (GUI). The Scratch VM is
responsible for defining the operations of all blocks and handles
the execution of programs. The interface required to create such
programs is provided by the Scratch GUI that enables visualising
tasks performed in the VM.

4.1 Scratch Extension
Scratch extensions5 are a standard part of the infrastructure pro-
vided by Scratch to accommodate new features and hardware into
the platform. Through extensions, custom blocks can be instantly
loaded into the Scratch editor and then used alongside standard
Scratch blocks to create programs. We developed a Scratch exten-
sion by modifying the Scratch VM to include a new Javascript file
specifying our sensor blocks and their behaviour.

With the latest version of Scratch being an entirely web-based
application, classrooms can easily access the programming environ-
ment using a browser without the need for any further installations.
However, custom Scratch extensions are not permitted to be directly
included on the official Scratch website. We achieved a workaround
to this obstacle by deploying a clone of the Scratch platform con-
taining our extension. Similar to the official website, this clone is
accessible through the browser at our custom URL6 and identical
in functionality.

4.2 Establishing Sensor Connectivity
Using the Web Serial API offered in Chromium-based browsers, we
implemented the two blocks illustrated in Figure 4A that enable
the Scratch platform to read data from our sensor toolkit. The
Connect block is used to discover any connected sensors, obtain user
permissions to connect with them and establish a communication
channel. We included a USB device filter in the JavaScript code for
this block to avoid recognising any devices that do not belong to
our sensor kit. As sudden sensor disconnections may lead to unsafe
program execution in the Scratch VM, we included internal USB
event listeners to compensate for such scenarios.

Once connected, the sensors commence their transmission proto-
col described in Section 3.1. The task of initiating data retrieval and
processing this raw byte data are handled asynchronously through
the Read Forever block. This block runs a threaded process that
continuously performs appropriate byte manipulations to update
the internal variables representing the sensor values. Thus, both
the Connect and Read Forever blocks need to be used in unison to
set up and maintain sensor connection and communications.

4.3 Monitoring Environmental Data
Figure 4C shows the collection of five Scratch reporter blocks, each
corresponding to a particular sensor. These blocks directly mirror
the state of the internal variables containing the respective live
stream of sensor data. Since reporter blocks are Scratch’s equiva-
lent of traditional variables, they can be placed within appropriate
Scratch blocks to perform various operations. However, especially

5https://en.scratch-wiki.info/wiki/Scratch_Extension
6https://play.kiwrious.com/

Figure 4: Scratch blocks which provide the capability to
A) Establish sensor connectivity; B) Monitor environmental
data; C) React to changes in the real world.

for younger children, these blocks offer a helpful way to simply
monitor live sensor data and enable quick experimentation with
sensors before building programs.

4.4 Reacting to Changes in the World
We created two variations of Scratch boolean blocks, as seen in
Figure 4B, that trigger responses to changes in physical conditions.

Increasing/Decreasing Block. Young children often find defining
numerical thresholds challenging and unappealing when program-
ming [17, 34]. We addressed this concern by implementing a block
triggered by an increase or decrease in sensor data. Students simply
specify their desired trigger condition (increase/decrease) by se-
lecting an appropriate option from the dropdown menu within the
block. The comparison of numerical values needed to indicate this
directional change were performed internally through JavaScript
and thus hidden from the user. We adjust the precision of sensor
values prior to performing this comparison to account for the small
natural fluctuations of sensor readings in realistic environmental
conditions. Thus, relying on the gradient of change in sensor data
improves a student’s programming experience as it fosters a more
intuitive association with the natural world.

Raw Sensor Value Comparison Block. Creating a trigger based on
the numerical value of a sensor measurement usually involves drag-
ging and dropping a sensor reporter block inside a Scratch operator
block. We consolidated the operations of these blocks into a single
boolean block. In addition to improving usability by reducing the
number of user tasks [31], the comparison of values was handled dif-
ferently to a regular operator block. As sensor reporter blocks may
return strings such as ‘Not Connected’, exceptions were needed to
prevent incorrect boolean evaluations. Compared to the ‘increas-
ing/decreasing’ block, this block is slightly more complex to use as
it requires entry of a suitable threshold value, yet it offers greater
control over sensor data that could lead to a broader exploration of
environmental changes when programming (i.e. the ‘wide walls’
advocated by Resnick and Silverman [40]).

https://en.scratch-wiki.info/wiki/Scratch_Extension
https://play.kiwrious.com/

Figure 5: A) Starter project for providing the fundamentals of Scratch programming. The sprite moves to the right when the
right arrow key is pressed; B) Sensor-controlled sprite where the butterfly moves upward when humidity increases.

5 DEPLOYMENT
5.1 Participants
We evaluated our tool in a classroom lesson conducted as part of an
afterschool STEM initiative aimed at young children. The session
was led by two teachers, both of whom were highly proficient
with Scratch but having no prior experience using our tool in the
classroom. Nineteen students (10 boys, 9 girls) aged between 7 to
9 years from various primary schools in the country attended the
class.

All students were enrolled in a program called “Tinker Club”7
which primarily focused on non-coding based learning. At the
time of the study, students were three weeks (an equivalent of 3
hours of learning) into their curriculum. Most of their activities in-
volved hands-on tasks for understanding practical concepts around
physics, chemistry and biology, and their real-world application,
e.g., how bridges overcome gravity. Despite the absence of Scratch
in this program, all students stated they had previously used Scratch
elsewhere (at home or school). Six students claimed to be regular
users, while the others rarely used Scratch. In addition to their
minimal experience with Scratch, this was also the students’ first
time programming with environmental data.

5.2 Methodology
The study was performed in one of the weekly in-person classes
hosted by the education program provider. The entire duration of
the class (60 minutes) was utilised, with the study serving as the
lesson taught that week. It consisted of a 10-minute brainstorming
activity, 10-minute introduction, 35-minute open-ended Scratch
coding activity and 5-minute feedback session.

5.2.1 Brainstorming Activity (10 mins). The focus of this segment
was to leverage on the everyday experiences of students to inspire
the notion of working with environmental data. Drawing on the
program’s theme of exposing students to “how stuff works”, the
teachers opened a conversation to discuss examples of sensors and
where students may have seen them in use. Following this, the
teachers introduced the sensor toolkit to the class and explained
the various aspects of the physical world that they could measure.
Students were encouraged to think aloud and draw on whiteboards
to ideate applications of sensing these phenomena.

5.2.2 Introduction to Programming with Sensors (10 mins). As il-
lustrated in Figure 5, our introduction revolved around a starter

7http://www.mycreatelab.com/

project which provided students with a fundamental understanding
of Scratch and programming with sensors. Basic Scratch blocks and
their functions were explained to the class while creating the sprite
shown in Figure 5A. Together, these blocks make the sprite move
five steps to the right on pressing the keyboard’s right arrow key.

We then proceeded to demonstrate how students could explore
using sensors to control the behaviour of their programs. Sensor
blocks along with regular Scratch blocks were combined to intro-
duce a new sprite (butterfly) as seen in Figure 5B. When executed,
the sprite will move upwards if an increase in the humidity level
is detected (e.g. by blowing on the humidity sensor). Thus, stu-
dents were shown how easy it was to build interactive programs in
Scratch that respond to changes in the real world.

5.2.3 Open-Ended Coding Activity (35 mins). The introduction was
followed by a 35 minute free-exploration period, guided by the
Use-Modify-Create pedagogy [30, 41]. Prior work by Iskrenovic-
Momcilovic et al. [25] recommended adopting a pair-programming
approach for younger primary school students involved in coding
Scratch. Thus, students were grouped into pairs before commencing
the activity. We ensured that the six students who were relatively
confident in using Scratch were placed in different pairs. One of
these students, however, requested to work on their own.

All students had complete freedom in deciding what projects
they created and what sensors they used. We also indicated that the
example project was available for them to download and modify if
desired. Both teachers were present to offer active support during
the session. Additionally, students were also provided with helpful
guides on programming with Scratch and using the sensors.

5.2.4 Data Collection (5 mins). At the end of the coding activity,
groups were asked to submit their programs to a Padlet board8.
We administered a questionnaire via Google Forms to explore how
students perceived programming following our activity. All ques-
tionnaire items were adopted from the survey instrument devised
by Kong et al. [28], which specifically aims to evaluate the attitudes
of primary school students towards programming. Questions per-
taining to the interest and creativity subscales of the survey were
selected for inclusion. Students responded to these questions on
a 5-point Likert scale. The questions, and a summary of the data
collected, are shown in Table 2. Furthermore, both teachers were
asked to submit a short reflection of their classroom experience by
the end of the day.

8https://padlet.com/KiwriousPlay/49fsmsyic2yhrfr1

http://www.mycreatelab.com/
https://padlet.com/KiwriousPlay/49fsmsyic2yhrfr1

Figure 6: A) Program created by a student pair using the light sensor, where the sprite moves to the left or right based on
an increase or decrease of the detected lux value; B) Program created by a student pair using the humidity sensor, where the
humidity level influences how the character is controlled through the keyboard.

6 FINDINGS
This deployment represents the first use of our toolkit in a real
classroom. Our evaluation is guided by the three questions listed in
Section 1. For the first question, we are interested in knowing which
of the sensors students chose to use when writing their programs
and how they made use of the sensor data. For the second question,
we analyse the questionnaire data collected at the end of the session
to understand how students view programming as an interesting
and creative activity. Finally, for the third question, we reflect on
the teachers’ feedback regarding the usability of the toolkit in the
primary school classroom.

We begin our analysis by decomposing all submitted programs
into their constituent blocks. Analysing the usage of individual
blocks in Scratch programs is a common strategy, and has been
used recently to measure creativity in student projects [29]. Table 1
illustrates the block elements used across all nine submitted projects
(P1 – P9).

6.1 Project Analysis
Exploring different physical phenomena was of interest to the stu-
dents, with all five of our sensor types being used across the nine
projects submitted. As seen in Table 1, the Light, Humidity and
Temperature sensors were used more frequently among projects
than the Conductivity and VOC sensors. Since changes in conduc-
tance and tVOC may be challenging to induce without additional
material or knowledge, students preferred to work with sensors to
which they could better relate. Manipulating light, humidity and
temperature is relatively straightforward (e.g. by covering, holding
and blowing on the corresponding sensors).

When allowed free exploration, students explored the informa-
tion provided by their sensor of choice to provide an initial con-
text that guided how they constructed their Scratch programs. All
projects employed a feedback mechanism-based approach where
changes in the environment caused subsequent action in the pro-
gram. As seen in the example programs shown in Figures 6A-B,
sensor data was primarily purposed for controlling sprites in re-
sponse to a change in the environment. For instance, Figure 6B
illustrates a student pair leveraging the humidity of their breath to
move and rotate a sprite by blowing on the sensor, or waving the
sensor in the air.

To handle incoming sensor data, students needed to use appropri-
ate programming constructs to achieve their desired functionality.
We observed students following a standard procedure of using an
event listener to trigger the sequential execution of a sensor-based
conditional logic (selection) and action inside an infinite loop (iter-
ation). Table 1 indicates the recurring use of the Green Flag Clicked,
Forever, If, and If-Else Scratch blocks as they were essential for en-
abling this mechanism. The program shown in Figure 6B illustrates
the handling of sensor data using the raw sensor value comparison
block. The conditional argument is constructed by providing a sen-
sible humidity parameter (> 46%) in their sensor logic. Only three
student pairs attempted sensor logic this way (see Table 1). In con-
trast, Figure 6A shows the more popular method for working with
sensor data. In this case, the project used the Light sensor, and an
increase or decrease in lux moved the sprite to the left or right. The
popularity of our scaffolded ‘increasing/decreasing’ blocks aligns
with guidelines described by Flannery et al. for providing young
children with input-constrained blocks [17].

Table 1: The different block elements used by all nine student pairs (P1 – P9) when creating their Scratch projects.

Block P1 P2 P3 P4 P5 P6 P7 P8 P9

Constructs

Green Flag

Forever

Single If

If Else

Sensor Type

Humidity

Lux

Surface Temperature

Conductance

tVOC

Sensor Trigger
Raw Value Comparison

Increasing/Decreasing

Visual Changes

Move

Go to x, y

Change y by

Turn

Change Size

Say

Say for

Switch Costume

Next Costume

User Interactivity Key <x> Pressed

Synchronisation Wait

Blocks evoking various visual changes for sprites were very com-
mon in the student programs. Table 1 shows that students often
related a change in sensor data to the movement of sprites on the
screen.Move, Turn, andGo Towere popular examples of such blocks,
and this mirrors the findings of Portelance et al. where ‘Motion’
blocks were the most common type of blocks used by young learn-
ers using ScratchJr [37]. In addition to movement, changes to the
appearance of sprites through costume switches were also used
by some students. Although rare, advanced blocks such as ‘wait’
blocks for introducing delays in programs and ‘sensing’ blocks that
listen to keypresses were also present. Thus, while all students
successfully used sensor data in their programs, the data was used
in a variety of ways.

6.2 Student Perceptions
The responses to the 7 items on the questionnaire are shown in
Table 2. In general, the Likert scores show high agreement with the
statements across both scales. With respect to interest, students
indicated strongly that they were curious about programming and
found it fun and interesting. There was a noticeably weaker senti-
ment regarding attraction to programming. Although the items on
the questionnaire were taken from a survey designed for primary
school students and validated by experts [28], as the students were
very young, their lack of exposure to ‘programming activities’ may
be the reason for this indifference.

With respect to creativity, responses strongly indicated that stu-
dents viewed programmers as creative people and recognised the
importance of being creative when programming. Although the

session was limited in time, the ease of using the sensors enabled
students to create a wide variety of programs with respect to the
sensors chosen and the programming blocks used. Across all of
the groups, all of the different sensors were used in some way to
form novel programs. The high visibility of the projects in the class-
room setting may have positively impacted students’ perceptions
of creativity.

6.3 Teacher Perceptions
Both teachers who attended the session highlighted the simplicity
and robustness of our toolkit for enabling programming with sen-
sors in Scratch. They frequently mentioned terms such as “stable”
and “easy to follow” when describing the classroom deployment.
Our design considerations to realise simple but powerful sensor
blocks were emphasised in one teachers’ account of events: “Pro-
gramming has been made easy with all the relevant coding blocks in
one place. Thus, students can start quickly, a much-needed factor”.
These comments, and our observations of the deployment, suggest
that our toolkit is easy to use in practice and avoids some of the
common technical pitfalls relating to the classroom deployment of
physical computing devices [49].

Teachers saw the opportunity to draw connections to the real
world as an exciting way to evoke enthusiasm and creative thinking
for students in the programming task. At the start of the session,
they noticed that “the kids lit up, on discovering the possibility to
create hardware-based expressions with Scratch”. The impact of using
sensor data to support usage of Scratch blocks was acknowledged
in a teachers’ observation: “The kids were very excited to be able

Table 2: Questionnaire responses to the survey investigating interest in programming and creative self-efficacy. Responses on
a 5-point Likert scale: SD: Strongly disagree, D: Disagree, N: Neither agree nor disagree, A: Agree, SA: Strongly agree.

Question SD D N A SA

Interest in programming

Programming is interesting 0% 0% 0% 30% 70%
I am curious about the content of programming 0% 0% 0% 40% 60%
I think the content of programming is fun 0% 0% 0% 0% 100%
I am very attracted to computer programming activities 0% 10% 40% 20% 30%

Creativity
It is important to be creative when you are programming 0% 0% 0% 0% 100%
I would like to design things using programming 0% 0% 0% 50% 50%
Computer programmers are creative 0% 10% 0% 30% 60%

to modify the parameters (of blocks) with things that are in their
immediate environment”. Referring to the student project illustrated
in Figure 6B, the teacher commented, “loved what some of the kids
did by conceptualising a game that is sensor-enabled! - Blow to raise
the humidity over a certain level, resulting in a sprite moving a few
steps.”

The students in our evaluation were at the very low end of
the recommended age range for Scratch. One of the key princi-
ples of Scratch is its ‘low floor’, referring to the ease with which
learners can get started. We have found that our sensor toolkit
maintains this low floor, even for the youngest students for whom
Scratch is recommended. One teacher stated, “Overall, the session
was very engaging even for the younger age group. I see good potential
here. The kids definitely wanted (to do) more”. Furthermore, teachers
also appreciated the design of the session in having students work
in pairs. They noted that “collaboration between the kids worked
well” and were “surprised by the kids’ desire to share their projects”.
Consequently, all teachers found our toolkit a viable approach for
motivating students to learn programming and were eager to use it
in the future.

7 CONCLUSION
In this paper, we describe the design, development and evaluation
of a tool that allows young learners to easily incorporate real-time
sensor data into their visual programming environment. Evaluation
of this in a classroom setting with 19 young learners (aged 7–9)
revealed that the sensors were popular with students and all five
of our sensor types were used in the student projects. Students
used the real-time sensor data mostly to evoke visual changes in
sprites, consistent with prior studies, and they found our scaffolded
blocks that were triggered by an increase or decrease in sensor data
particularly useful. At the end of the session, students reported
that programming is an interesting activity that requires creativity.
Feedback from the two teachers involved in the session was very
positive as they saw our toolkit as an exciting prospect to generate
enthusiasm and creativity in a time-constrained classroom. Given
that students were keen to express their creativity and teachers
saw the ease of integrating our toolkit into classroom teaching, we
see great value in providing plug-and-play sensor availability as a
native feature in block-based programming environments.

ACKNOWLEDGMENTS
This work was supported by the Assistive Augmentation research
grant under the Entrepreneurial Universities (EU) initiative of New
Zealand. We would like to thank MyCreate Lab, Singapore for their
support in making this work possible.

REFERENCES
[1] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney, Peli

De Halleux, Steve Hodges, Michał Moskal, and Gareth Stockdale. 2020. The
BBC Micro:Bit: From the U.K. to the World. Commun. ACM 63, 3 (feb 2020),
62–69. https://doi.org/10.1145/3368856

[2] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.
https://doi.org/10.1145/3344429.3372508

[3] Marina Umaschi Bers. 2018. Coding, playgrounds and literacy in early childhood
education: The development of KIBO robotics and ScratchJr. In 2018 IEEE Global
Engineering Education Conference (EDUCON). 2094–2102. https://doi.org/10.1109/
EDUCON.2018.8363498

[4] Marina Umaschi Bers. 2019. Coding as another language: a pedagogical approach
for teaching computer science in early childhood. Journal of Computers in
Education 6, 4 (2019), 499–528. https://doi.org/10.1007/s40692-019-00147-3

[5] Paulo Blikstein. 2013. Gears of Our Childhood: Constructionist Toolkits, Robotics,
and Physical Computing, Past and Future. In Proceedings of the 12th International
Conference on Interaction Design and Children (New York, New York, USA) (IDC
’13). Association for Computing Machinery, New York, NY, USA, 173–182. https:
//doi.org/10.1145/2485760.2485786

[6] Tracey Booth and Simone Stumpf. 2013. End-User Experiences of Visual and Tex-
tual Programming Environments for Arduino. In End-User Development, Yvonne
Dittrich, Margaret Burnett, Anders Mørch, and David Redmiles (Eds.). Springer
Berlin Heidelberg, Heidelberg, 25–39. https://doi.org/10.1007/978-3-642-38706-
7_4

[7] Neil C. C. Brown, Amjad Altadmri, and Michael Kölling. 2016. Frame-Based Edit-
ing: Combining the Best of Blocks and Text Programming. In 2016 International
Conference on Learning and Teaching in Computing and Engineering (LaTICE).
IEEE Computer Society, USA, 47–53. https://doi.org/10.1109/LaTiCE.2016.16

[8] Neil C. C. Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart:
The Resurgence of Computer Science in UK Schools. ACM Trans. Comput. Educ.
14, 2, Article 9 (June 2014), 22 pages. https://doi.org/10.1145/2602484

[9] Jiashuo Cao, Samantha W. T. Chan, Dawn L Garbett, Paul Denny, Alaeddin Nas-
sani, Philipp M. Scholl, and Suranga Nanayakkara. 2021. Sensor-Based Interactive
Worksheets to Support Guided Scientific Inquiry. In Interaction Design and Chil-
dren (Athens, Greece) (IDC ’21). Association for Computing Machinery, New
York, NY, USA, 1–7. https://doi.org/10.1145/3459990.3460716

[10] Yu-Hui Ching, Yu-Chang Hsu, and Sally Baldwin. 2018. Developing Computa-
tional Thinking with Educational Technologies for Young Learners. TechTrends
62, 6 (2018), 563–573. https://doi.org/10.1007/s11528-018-0292-7

[11] Zhen Liu Danli Wang, Tingting Wang. 2014. A tangible programming tool for
children to cultivate computational thinking. The Scientific World Journal Article
428080 (2014), 1–10. https://doi.org/10.1155/2014/428080

[12] Paul Denny, Brett A. Becker, Michelle Craig, Greg Wilson, and Piotr Ba-
naszkiewicz. 2019. Research This! Questions That Computing Educators Most
Want Computing Education Researchers to Answer. In Proceedings of the 2019
ACM Conference on International Computing Education Research (Toronto ON,
Canada) (ICER ’19). Association for Computing Machinery, New York, NY, USA,
259–267. https://doi.org/10.1145/3291279.3339402

[13] Michael D. DeSchryver and Aman Yadav. 2015. Creative and Computational
Thinking in the Context of New Literacies: Working with Teachers to Scaffold
Complex Technology-Mediated Approaches to Teaching and Learning. Journal
of Technology and Teacher Education 23, 3 (2015), 411–431.

[14] Caitlin Duncan and Tim Bell. 2015. A Pilot Computer Science and Programming
Course for Primary School Students. In Proceedings of the Workshop in Primary
and Secondary Computing Education (London, United Kingdom) (WiPSCE ’15).
Association for Computing Machinery, New York, NY, USA, 39–48. https://doi.
org/10.1145/2818314.2818328

https://doi.org/10.1145/3368856
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1109/EDUCON.2018.8363498
https://doi.org/10.1109/EDUCON.2018.8363498
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1145/2485760.2485786
https://doi.org/10.1145/2485760.2485786
https://doi.org/10.1007/978-3-642-38706-7_4
https://doi.org/10.1007/978-3-642-38706-7_4
https://doi.org/10.1109/LaTiCE.2016.16
https://doi.org/10.1145/2602484
https://doi.org/10.1145/3459990.3460716
https://doi.org/10.1007/s11528-018-0292-7
https://doi.org/10.1155/2014/428080
https://doi.org/10.1145/3291279.3339402
https://doi.org/10.1145/2818314.2818328
https://doi.org/10.1145/2818314.2818328

[15] Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, Leonard Busuttil,
Elizabeth Cole, Christine Liebe, Francesco Maiorana, Monica M. McGill, and
Keith Quille. 2019. An International Comparison of K-12 Computer Science
Education Intended and Enacted Curricula. In Proceedings of the 19th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’19). Association for Computing Machinery, New York, NY, USA, Article
4, 10 pages. https://doi.org/10.1145/3364510.3364517

[16] Aamir Fidai, Mary Margaret Capraro, and Robert M. Capraro. 2020. “Scratch”-ing
computational thinking with Arduino: A meta-analysis. Thinking Skills and
Creativity 38 (2020), 100726. https://doi.org/10.1016/j.tsc.2020.100726

[17] Louise P. Flannery, Brian Silverman, Elizabeth R. Kazakoff, Marina Umaschi Bers,
Paula Bontá, and Mitchel Resnick. 2013. Designing ScratchJr: Support for Early
Childhood Learning through Computer Programming. In Proceedings of the 12th
International Conference on Interaction Design and Children (New York, New York,
USA) (IDC ’13). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/2485760.2485785

[18] Neil Fraser. 2015. Ten Things We’ve Learned from Blockly. In Proceedings of
the 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond) (BLOCKS AND
BEYOND ’15). IEEE Computer Society, USA, 49–50. https://doi.org/10.1109/
BLOCKS.2015.7369000

[19] Katharina Geldreich, Alexandra Simon, and Elena Starke. 2019. Which Percep-
tions Do Primary School Children Have about Programming?. In Proceedings
of the 14th Workshop in Primary and Secondary Computing Education (Glasgow,
Scotland, Uk) (WiPSCE’19). Association for Computing Machinery, New York,
NY, USA, Article 1, 7 pages. https://doi.org/10.1145/3361721.3361728

[20] Alexandra Gendreau Chakarov, Quentin Biddy, Jennifer Jacobs, Mimi Recker, and
Tamara Sumner. 2020. Opening the Black Box: Investigating Student Understand-
ing of Data Displays Using Programmable Sensor Technology. In Proceedings of
the 2020 ACM Conference on International Computing Education Research (Virtual
Event, New Zealand) (ICER ’20). Association for Computing Machinery, New
York, NY, USA, 291–301. https://doi.org/10.1145/3372782.3406268

[21] Jamie Gorson, Nikita Patel, Elham Beheshti, Brian Magerko, and Michael Horn.
2017. TunePad: Computational Thinking Through Sound Composition. In Pro-
ceedings of the 2017 Conference on Interaction Design and Children (Stanford,
California, USA) (IDC ’17). Association for Computing Machinery, New York, NY,
USA, 484–489. https://doi.org/10.1145/3078072.3084313

[22] Gyeongyong Heo. 2019. Implementation of an Arduino Compatible Modular
Kit for Educational Purpose. Journal of the Korea Institute of Information and
Communication Engineering 23, 5 (2019), 547–554. https://doi.org/10.6109/jkiice.
2019.23.5.547

[23] Steve Hodges, Sue Sentance, Joe Finney, and Thomas Ball. 2020. Physical Com-
puting: A Key Element of Modern Computer Science Education. Computer 53, 4
(2020), 20–30. https://doi.org/10.1109/MC.2019.2935058

[24] Michael S. Horn, R. Jordan Crouser, andMarina U. Bers. 2012. Tangible interaction
and learning: the case for a hybrid approach. Personal and Ubiquitous Computing
16, 4 (2012), 379–389. https://doi.org/10.1007/s00779-011-0404-2

[25] Olivera Iskrenovic-Momcilovic. 2019. Pair programming with scratch. Education
and Information Technologies 24, 5 (2019), 2943–2952.

[26] Michail Kalogiannakis and Stamatios Papadakis. 2019. Pre-service kindergarten
teachers’ acceptance of ’ScratchJr’ as a tool for learning and teaching Compu-
tational Thinking and science education. Journal of Emergent Science 16 (2019),
31–34.

[27] F. Klassner and S.D. Anderson. 2003. LEGO MindStorms: not just for K-12
anymore. IEEE Robotics Automation Magazine 10, 2 (2003), 12–18. https://doi.
org/10.1109/MRA.2003.1213611

[28] Siu-Cheung Kong, Ming Ming Chiu, and Ming Lai. 2018. A study of primary
school students’ interest, collaboration attitude, and programming empowerment
in computational thinking education. Computers & Education 127 (2018), 178–189.
https://doi.org/10.1016/j.compedu.2018.08.026

[29] Anastasia Kovalkov, Avi Segal, and Kobi Gal. 2020. Inferring Creativity in Visual
Programming Environments. In Proceedings of the Seventh ACM Conference on
Learning @ Scale (Virtual Event, USA) (L@S ’20). Association for Computing Ma-
chinery, New York, NY, USA, 269–272. https://doi.org/10.1145/3386527.3406725

[30] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational Thinking for Youth in
Practice. ACM Inroads 2, 1 (2011), 32–37. https://doi.org/10.1145/1929887.1929902

[31] I Scott MacKenzie. 1992. Fitts’ law as a research and design tool in human-
computer interaction. Human-computer interaction 7, 1 (1992), 91–139.

[32] Paul Marshall. 2007. Do Tangible Interfaces Enhance Learning?. In Proceedings
of the 1st International Conference on Tangible and Embedded Interaction (Baton
Rouge, Louisiana) (TEI ’07). Association for Computing Machinery, New York,
NY, USA, 163–170. https://doi.org/10.1145/1226969.1227004

[33] David Mellis, Massimo Banzi, David Cuartielles, and Tom Igoe. 2007. Arduino:
An open electronic prototyping platform. In Proc. Chi, Vol. 2007. 1–11.

[34] Timothy R Mickel. 2015. Kids, coding, and connections: extending the ScratchJr
programming environment to support wireless physical devices. Ph.D. Dissertation.
Massachusetts Institute of Technology.

[35] Seymour Papert. 1972. Teaching Children Thinking. Programmed Learn-
ing and Educational Technology 9, 5 (1972), 245–255. https://doi.org/10.1080/

1355800720090503 arXiv:https://doi.org/10.1080/1355800720090503
[36] Seymour Papert and Idit Harel. 1991. Situating Constructionism. In Construc-

tionism. Ablex Publishing Corporation, Norwood, NJ, 193–206.
[37] Dylan J. Portelance, Amanda L. Strawhacker, and Marina Umaschi Bers. 2016.

Constructing the ScratchJr programming language in the early childhood class-
room. International Journal of Technology and Design Education 26, 4 (2016),
489–504. https://doi.org/10.1007/s10798-015-9325-0

[38] Thomas W. Price, Neil C.C. Brown, Dragan Lipovac, Tiffany Barnes, and Michael
Kölling. 2016. Evaluation of a Frame-Based Programming Editor. In Proceedings
of the 2016 ACM Conference on International Computing Education Research (Mel-
bourne, VIC, Australia) (ICER ’16). Association for Computing Machinery, New
York, NY, USA, 33–42. https://doi.org/10.1145/2960310.2960319

[39] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (nov 2009), 60–67. https://doi.org/10.1145/1592761.1592779

[40] Mitchel Resnick and Brian Silverman. 2005. Some Reflections on Designing Con-
struction Kits for Kids. In Proceedings of the 2005 Conference on Interaction Design
and Children (Boulder, Colorado) (IDC ’05). Association for ComputingMachinery,
New York, NY, USA, 117–122. https://doi.org/10.1145/1109540.1109556

[41] Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin.
2020. TIPP&SEE: A Learning Strategy to Guide Students through Use - Mod-
ify Scratch Activities. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (Portland, OR, USA) (SIGCSE ’20). Association for
ComputingMachinery, NY, USA, 79–85. https://doi.org/10.1145/3328778.3366821

[42] Sandra Schön, Martin Ebner, and Swapna Kumar. 2014. The Maker Movement.
Implications of new digital gadgets, fabrication tools and spaces for creative
learning and teaching. eLearning papers 39 (2014), 14–25. Special edition 2014
“Transforming Education through Innovation and Technology".

[43] Deborah Seehorn, Stephen Carey, Brian Fuschetto, Irene Lee, Daniel Moix, Dianne
O’Grady-Cunniff, Barbara Boucher Owens, Chris Stephenson, and Anita Verno.
2011. CSTA K–12 Computer Science Standards: Revised 2011. Technical Report.
New York, NY, USA.

[44] Sue Sentance, JaneWaite, Steve Hodges, EmilyMacLeod, and Lucy Yeomans. 2017.
"Creating Cool Stuff": Pupils’ Experience of the BBC Micro:Bit. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education
(Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Machinery,
New York, NY, USA, 531–536. https://doi.org/10.1145/3017680.3017749

[45] Sue Sentance, Jane Waite, Lucy Yeomans, and Emily MacLeod. 2017. Teaching
with Physical Computing Devices: The BBC Micro:Bit Initiative. In Proceedings
of the 12th Workshop on Primary and Secondary Computing Education (Nijmegen,
Netherlands) (WiPSCE ’17). Association for Computing Machinery, New York,
NY, USA, 87–96. https://doi.org/10.1145/3137065.3137083

[46] Robert Sheehan. 2003. Children’s Perception of Computer Programming as an Aid
to Designing Programming Environments. In Proceedings of the 2003 Conference
on Interaction Design and Children (Preston, England) (IDC ’03). Association for
Computing Machinery, NY, USA, 75–83. https://doi.org/10.1145/953536.953548

[47] M. P. Jacob Habgood Simon P. Rose and Tim Jay. 2017. An Exploration of the
Role of Visual Programming Tools in the Development of Young Children’s
Computational Thinking. The Electronic Journal of e-Learning 15, 4 (2017), 297–
309. http://www.ejel.org/volume15/issue4/p297

[48] Hussel Suriyaarachchi, Paul Denny, and Suranga Nanayakkara. 2022. Scratch and
Sense: Using Real-Time Sensor Data to Motivate Students Learning Scratch. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 1 (Providence, RI, USA) (SIGCSE 2022). Association for Computing Machinery,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3478431.3499316

[49] Markus Tyrén, Niklas Carlborg, Carl Heath, and Eva Eriksson. 2018. Consider-
ations and Technical Pitfalls for Teaching Computational Thinking with BBC
Micro:Bit. In Proceedings of the Conference on Creativity and Making in Edu-
cation (Trondheim, Norway) (FabLearn Europe’18). Association for Computing
Machinery, New York, NY, USA, 81–86. https://doi.org/10.1145/3213818.3213829

[50] Danli Wang, Cheng Zhang, and Hongan Wang. 2011. T-Maze: A Tangible Pro-
gramming Tool for Children. In Proceedings of the 10th International Confer-
ence on Interaction Design and Children (Ann Arbor, Michigan) (IDC ’11). As-
sociation for Computing Machinery, New York, NY, USA, 127–135. https:
//doi.org/10.1145/1999030.1999045

[51] DavidWeintrop. 2019. Block-Based Programming in Computer Science Education.
Commun. ACM 62, 8 (jul 2019), 22–25. https://doi.org/10.1145/3341221

[52] David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-Based Programming. In Proceedings
of the 14th International Conference on Interaction Design and Children (Boston,
Massachusetts) (IDC ’15). Association for Computing Machinery, New York, NY,
USA, 199–208. https://doi.org/10.1145/2771839.2771860

[53] LeChen Zhang, Jalal Nouri, and Lennart Rolandsson. 2020. Progression Of
Computational Thinking Skills In Swedish Compulsory Schools With Block-
Based Programming. In Proc. 22nd Australasian Comp. Ed. Conf. (Melbourne,
Australia) (ACE’20). ACM, USA, 66–75. https://doi.org/10.1145/3373165.3373173

https://doi.org/10.1145/3364510.3364517
https://doi.org/10.1016/j.tsc.2020.100726
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1145/3361721.3361728
https://doi.org/10.1145/3372782.3406268
https://doi.org/10.1145/3078072.3084313
https://doi.org/10.6109/jkiice.2019.23.5.547
https://doi.org/10.6109/jkiice.2019.23.5.547
https://doi.org/10.1109/MC.2019.2935058
https://doi.org/10.1007/s00779-011-0404-2
https://doi.org/10.1109/MRA.2003.1213611
https://doi.org/10.1109/MRA.2003.1213611
https://doi.org/10.1016/j.compedu.2018.08.026
https://doi.org/10.1145/3386527.3406725
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1226969.1227004
https://doi.org/10.1080/1355800720090503
https://doi.org/10.1080/1355800720090503
https://arxiv.org/abs/https://doi.org/10.1080/1355800720090503
https://doi.org/10.1007/s10798-015-9325-0
https://doi.org/10.1145/2960310.2960319
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1109540.1109556
https://doi.org/10.1145/3328778.3366821
https://doi.org/10.1145/3017680.3017749
https://doi.org/10.1145/3137065.3137083
https://doi.org/10.1145/953536.953548
http://www.ejel.org/volume15/issue4/p297
https://doi.org/10.1145/3478431.3499316
https://doi.org/10.1145/3213818.3213829
https://doi.org/10.1145/1999030.1999045
https://doi.org/10.1145/1999030.1999045
https://doi.org/10.1145/3341221
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/3373165.3373173

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sensors as input devices
	2.2 Block-based programming and creativity

	3 Sensor Design & Development
	3.1 Enabling plug-and-play support
	3.2 Hardware development of the sensors
	3.3 Form factor design

	4 Software Implementation
	4.1 Scratch Extension
	4.2 Establishing Sensor Connectivity
	4.3 Monitoring Environmental Data
	4.4 Reacting to Changes in the World

	5 Deployment
	5.1 Participants
	5.2 Methodology

	6 Findings
	6.1 Project Analysis
	6.2 Student Perceptions
	6.3 Teacher Perceptions

	7 Conclusion
	Acknowledgments
	References

