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Detectable Facial Expressions and Head Gestures
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... evaluated in a feasibility study with 10 participants.
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Figure 1: We present CapGlasses, an untethered capacitive sensing smart glasses prototype that is fully battery-powered. In a
feasibility study we evaluated the detection of 12 different facial expressions and head gestures. Our lab study showed reason-
able accuracy at 89.6% with a user-dependent model suggesting our CapSense design being applicable in mobile context.

ABSTRACT
Augmenting the human body using wearable technology can be
particularly interesting to sense context. The user’s context includes
the mental and physical state, which is inferable by detecting facial
and head related gestures. For the recognition of these gestures, we
propose instrumenting a pair of glasses with Capacitive Sensing
(CapSense) technology. We demonstrate proximity sensing with
CapSense for mobile use despite its commonly known limitations in
context of mobility. Moreover, we demonstrate how to incorporate
transparent sensing electrodes into the glass and copper electrodes
into the frame while being potentially invisible in a future specs
product. We demonstrate an untethered battery-powered glasses
prototype, CapGlasses, to sense facial expressions and head gestures.
We selected a set of 12 gestures and ran a study with 12 users. We
obtained an average accuracy of 89.6% by a user-dependent machine
learning model. We focused on providing clear documentation to
enable a straightforward replication of our technology.
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1 INTRODUCTION
Facial expressions naturally occur and currently exist as grounds
for research in the area of affective computing [41]. A pioneer in
this area, Paul Ekman, established a facial action coding system
(FACS) [13], which remains the ground-truth database for all facial
movements and their associated emotional states. As we can uti-
lize facial expressions for affective computing, we can then utilize
them to infer on context information. For instance, implementing
an implicit interaction [49] to adjust a system’s behaviour based
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on the user’s mental and physical state would be beneficial in a
mobile driving task. Additionally, we could employ facial and head
gestures for an explicit control enabling quickly executable Microin-
teractions [3]. As short natural gestures do not overtax the user’s
attention, they enable for Peripheral Interaction [4]. Moreover, a
hands-free and parallel execution, which does not interrupt the
primary task, can potentially enable for Reflexive Interaction [37].

The detection of facial expressions and head gestures remains the
focus of current research, being of particular interest for collabora-
tive Mixed Reality applications [38]. Circumventing the problem of
expensive classification algorithms, recently, Facebook-Research [52]
demonstrated a complex facial-gesture-mapping to a virtual avatar
using a GAN Deep-Learning approach based on 9 cameras attached
to a VR-HMD. However, for gesture recognition, literature has
demonstrated the potential of utilizing other cost-effective techno-
logical solutions, such as Capacitive Sensing (CapSense) [42, 43].
A ‘face-hugging device’ [43], nevertheless, is too obtrusive to be
socially acceptable. The first mobile approach was demonstrated in
2017 in EarFieldSensing [36], using a simple earplug, enabling the
recognition of 5 gestures with reasonable accuracy of 90%. Other
mobile wearable CapSense approaches that in particular utilize a
proximity sensing have not been explored widely, as CapSense
usually requires a mains ground for this. Literature has yet to
demonstrate a technical solution that fulfils all requirements of
being computationally inexpensive, socially unobtrusive, applica-
ble in a mobile context, providing high accuracy for a reasonable
number of gestures. We believe an ordinary pair of glasses utilizing
CapSense technology can fulfil all four requirements.

Following Wobbrock [56], this research is an artifact contribu-
tion at which we demonstrate a wearable solution to sense facial
expressions and head gestures by untethered CapSense technol-
ogy. Previous wearable CapSense solutions were either tethered
to mass/grounds, or prone to interference, or demonstrated low
accuracy, or drove a current through the body.

2 RELATEDWORK
According to Grosse-Puppendahl et al. [17], Capacitive Sensing
(CapSense) can be seen as a broad synonym for any Electric Field
Sensing. However, in this paper, we understand it as a sensing
technique, in which at least one electrode is actively being charged.
We organized previous work into two subsections, introducing
general CapSense approaches and Facial Gesture Recognition in
another subsection.

2.1 Capacitive Sensing
CapSense is not a novel technology, already being implemented
within the last century into everyday objects, such as desk lamps.
In research, several CapSense toolkits exist to enable researchers
and designers to utilize Capsense beyond a simple binary switch,
such as a proximity sensor. Likely, the most popular toolkit is Paul
Badger’s CapSense library1, a software implementation utilizing
an Arduino for measurements. Other important developments in
HCI research include CapToolKit [55] and OpenCapSense [16]. Pro-
fessional CapSense toolkits are also available on the market with a

1Paul Badger’s CapSense Library: http://playground.arduino.cc/Main/CapacitiveSensor

recent one being the FDC2214 from Texas Instruments2. CapSense
is also embedded into many technological products, such as the
screen of a smartphone, enabling the sensing of touch input, as
well as pressure [10]. CapSense demonstrates a variety of versatile
uses; it can identify a user by its gait through capacitive insoles
[35], by pressing the user’s unique ear against the capacitive touch
screen [22], or by touching the screen with a capacitive ring, as Vu
et al. [51] demonstrates. Using CapSense as wearable technology,
such as in the shape of a ring [53], is powerful yet technically chal-
lenging, being quickly affected by environmental noise. Embedding
CapSense into clothes, such as pants, jackets or shoes enables for
precise recognition of walking activities [20], body postures, and
the identification of the user’s context, such as the floor the user
walks on [35]. Using two wristbands, hand and finger postures can
be identified [48]. In a stationary setup, one can enhance objects,
such as a sofa [18] and a chair [7] with posture detection or en-
able for in-air gesture recognition by integrating CapSense into
the frame of a screen [54] or a table [8]. In general, with CapSense,
a great variety of conductive parts, such as metal objects, can be
enhanced. Touché [48] demonstrates this, for instance, a smart
doorknob allows for secret "password grasping gestures". Aside
from these examples, many other CapSense instrumentations exist.
However, research on capacitive facial gesture recognition is very
marginal and mainly driven by Rantanen et al. [43], who developed
a rather obtrusive "face-hugging device," requiring 12 electrodes
that enable the sensing of four facial gestures with an average ac-
curacy of 88-93%. In contrast, our goal is to use a less obtrusive
hardware setup while achieving similar or better recognition rates.

2.2 Facial Gesture Recognition
Facial gestures can be sufficiently detected using visual approaches,
such as camera tracking [5]. This has been extensively used in
the area of affective computing [14]. Recently, Facebook Research
presented a complex facial expression mapping to a virtual avatar
using a GAN Deep-Learning approach by relying in 9 IR-Cameras
attached to a VR-HMD [52]. Technically speaking, their approach
is not a gesture recognition as it is also computationally expensive
and immobile. In a mobile context, when the user is walking, it
is unusual to have a camera positioned in front of the user’s face.
Even wearable micro-cameras have the drawback of being heavily
impacted by light conditions. Therefore, other wearable technolo-
gies come into play. Some mobile facial gesture control prototypes
utilizing different technologies have been developed and tested in
the past, although their spectrum of recognition was rudimentary.
San Agustin et al. [46] demonstrated the detection of a frown or the
tightening of the user’s jaw while using an EMG headband. By EMG
one is sensing electric activity generated between two opposing
electrodes. A similar setup with more electrodes was proposed by
Chen et al. [11] demonstrating to discriminate between 5 facial
expressions by a neuronal network approach with relatively high
accuracy of 97.12%. Another headband that can distinguish ‘raising
eyebrows’ and ‘lowering eyebrows’ from the default state deploys
force sensitive resistors (FSR) [59]. A rather unobtrusive wearable
device that attaches EMG electrodes to the temple region was pro-
posed by Gruebler & Suzuki [19] enabling to distinguish ‘smiling’,

2Texas Instruments FDC2214: http://www.ti.com/lit/ds/symlink/fdc2214.pdf
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Table 1: Comparison of CapGlasses to the state-of-the-art in research that demonstrates the detection of facial expressions
and head gestures. The number of gestures shown excludes the default (resting) gesture.

Name Venue ’Year Technology Location nGestures Accuracy Dependency Classifier

Saponas et al. [47] UIST ’09 Infrared Sensing in mouth 4 90% cross-user DT
Rantanen et al. [43] IEEE Sensors ’13 Capacitive Sensing on face 4 88% - 93% cross-user LR
Ishimaru et al. [25] AH ’14 Infrared Sensing face (glasses) 1 93% per-user DT
Zhang et al. [57] CHI ’14 Electromyography on throat 5 94.17% per-user SVM

Gruebler & Suzuki [19] IEEE TAC ’14 Electromyography on temple 2 95% per-user NN
Kanoh et al. [27] EMBC ’15 EOG face (glasses) 1 94.3% cross-user n/a
Chen et al. [11] Neurocomputing ’15 Electromyography face (headband) 4 97.12% per-user NN

AffectiveWear [31] ISWC ’15 Photo LEDs face (glasses) 6 98.7% per-user SVM
Bitey [2] MobileHCI ’16 Bone-Conduction Mic. back of head 5 78% per-user SVM

EarFieldSensing [36] CHI ’17 Electrical Field Sensing in ear 5 90% per-user DT
CanalSense [1] UIST ’17 Barometer in ear 10 87.6% per-user RF
W!NCE [44] IMWUT ’19 EOG + IMU face (glasses) 4 88% per-user CNN
Interferi [24] CHI ’19 Acoustic Interferometry on face 8 89% per-user RF
ChewIt [15] CHI ’19 Accelerometer + Button in mouth 9 86.1% per-user DT
KissGlass [28] AHs ’20 EOG + IMU face (glasses) 3 (10) 74.33% cross-user kNN
Masai et al. [30] AHs ’20 Photo-reflective Sensors face (glasses) 7 89.1% per-user SVM
Expressure [59] MDPI Sensors ’20 Force Sensitive Resistors face (headband) 2 82.4% cross-user SVM
CapGlasses AHs ’21 Capacitive Sensing face (glasses) 11 89.6% per-user RF

‘frowning’, and a ‘neutral expression’. In 2012, Matthies et al. [33]
used an EEG headset to detect eye winks and head movements.
The EEG working principle is similar, although it utilizes greater
amplification. Later, an in-ear prototype [32] was proposed that de-
tects ear wiggling and eye winks. Recently, a further development
of an ear plug [36] reliably distinguishes five facial expressions
(‘eye wink’, ‘head right’, ‘open mouth’, ‘say SH’, ‘smile’). Other
approaches are rather obtrusive, such as gluing a magnet to one’s
tongue [45] or applying EMG electrodes directly onto the user’s
face [57]. In 2018, Inzelberg et al. [23] proposed to attach EMG elec-
trodes onto the cheeks in form of some kind of skin tattoo. In the
same year, Li and Reyes [29] demonstrates attaching five infrared
proximity sensors to VR goggles to infer on the continuous lip and
jaw motions by measuring deformations of the cheeks and temples.
Another VR HMD by Bernal et al. [6] enables the classification of a
variety of emotional states using EMG, EOG, EDA, and EEG sen-
sors. Nine facial gestures are detectable with a bio-acoustic sensing
[24], applying a rather obtrusive sensing layer onto the face. A less
unobtrusive form factor would be a pair of glasses. Ishimaru et al.
[25] demonstrate a blink detection based on the infrared proximity
sensor of Google Glass. Bulling et al. [9] developed EOG Glasses
with six electrodes that allow for the tracking of eye movements. In
EOG we detect the voltage difference between two opposing elec-
trodes. Moreover, Masai et al. [31] attached eight photo reflective
sensors to a glasses frame, which detected ‘smile’, ‘laugh’, ‘disgust’,
‘angry’, ‘sad’ and a ‘surprise’ gesture. For photo reflective sensing,
one usually uses an emitting LED plus optical sensing diods. Kanoh
et al. [27] and Rostaminia et al. [44] use a commercial EOG glasses
(J!NS MEME) to classify facial expressions. Only Rantanen et al.
[42] present a pair of glasses using CapSense. Typicalley an elec-
trode is charged in a certain frequency as the charging time can
infer on the generated capacitance. Rantanen et al. [42] is capable
of detecting a ‘frowning’ and a ‘lifting of eyebrows’ to execute

click-events with an average accuracy of 82.5%, but which leaves
space for improvement in terms of the variety of detected gestures.

An overview of significant related work is also summarized in
Table 1. The table also illustrates how CapGlasses is positioned to-
wards the state-of-the-art in terms of gesture recognition properties.
In contrast to previous works, CapGlasses is capable in detecting 12
(11 + 1 default) gestures with a reasonable high accuracy. While the
same type of gestures can be recognized with other prototypes, one
must acknowledge that each technology has its (dis-/)advantage
and use case. For instance, camera fails with bad light, IMU barely
works when walking or in a car, mouth-placed sensors might not
be acceptable, etc. Another aspect worth looking at is the model’s
dependency. Since the face in particular has a very individual form
and expression, in previous research, models for machine learning
were trained that are mainly personalized (per-user) and not gen-
eralizable (cross-user). Cross-user models seem to only support a
limited number of gestures.

3 CAPGLASSES
As far as facial expression recognition is concerned, Capacitive
Sensing (CapSense) can be useful for proximity sensing. Particularly,
Rantanen et al. [43] already demonstrated how to use capacitive
sensors in a loading mode to detect facial activity with a face-
hugging prototype. While their prototype is capable of detecting
4 facial expressions, it is still bulky and obtrusive. Our goal is it
to find out whether we can achieve higher recognition rates with
an even more unobtrusive prototype, such as in the setup of a
glasses frame. In the following subsections, we briefly introduce
how CapSense works and what kind of benefits are potentially
enabled when employing this technology within a pair of glasses.

3.1 Background of Capacitive Sensing
Capacitance generally describes the amount of electrical charge
that can be stored between different objects, relative to each other.
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It is not limited to the standard electrical component ‘capacitor’,
but can be asserted between any two (or more) charge-carrying
objects. Capacitances of this kind can be introduced by asserting
virtual capacitors – any two arbitrary objects form a capacitor. In
our everyday environments electrical charges are ubiquitous, which
explains the widespread use of capacitive sensing technology in
many different applications. Interestingly, apart from everyday ob-
jects, the human body also carries charge. Capacitances are thus all
around us. In a standard CapSense loading mode, the capacitance
between a single measuring electrode and its surroundings is de-
termined by measuring how much electrical charge the electrode
can store. Since it is hard to directly measure the amount of charge
the electrode can store in loading mode sensing, the time it takes
for the electrode to reach a predefined voltage level is repeatedly
measured instead. It is important to note, however, the object to be
detected determines the performance of a capacitive measurement,
as well as the use case, which informs the size of the electrode.

3.2 Benefits of Capacitive Sensing Glasses
ACapSense glass frame has the advantage of being highly inconspic-
uous, unobtrusive, and socially accepted. With the advent of trans-
parent capacitive sheeting – as known from smartphone screens
– a measurement electrode array can be implemented that allows
for high facial-spatial resolution in a small form-factor. Electrodes
can be incorporated into glass frames or even eyeglass lenses at
low costs. Novel electrodes based on enhanced silicon-rubber (e.g.
mixed-in graphite, silver- compounds) or Indium Tin Oxide can
even be completely invisible. The ability to accurately measure
facial gestures offers great potential for implicit interactions. Facial
gestures virtually never consciously switch off and thus exist as
a reliable source of information. Time-series facial data analysis
can infer stress levels, arousal, or exhaustion. Even for a sleep-
analysis, an eye-mask could easily be fitted with flexible electrodes
and deployed while preserving comfort. In terms of recognition,
our approach works well because our unique technology allows us
to leverage on: (1) the physical arrangement of the electrodes that
cover a relatively large area in front of the face and (2) sensing both,
contact with the electrode and proximity changes, which reflects
deformation and movement of the skin during a gesture.

3.3 Challenges of Capacitive Sensing
Although CapSense enables for great sensing capabilities, it yields
challenges. Typically, a capacitive sensor is supposed to sense ac-
tivities in a certain direction. For instance, an antenna could be a
sensing electrode attached to a glasses frame and facing the user’s
face aiming to record facial activity. However, the antenna is om-
nidirectional. In result, the antenna picks up any environmental
change, such as movements or electrostatic changes in the near
vicinity. We can minimize the effect by shielding the backside of the
antenna with another electrode (either grounding it or using the
same potential), but which can also result in a decreased overall sig-
nal range. Moreover, we can perceive that absolute sensor-readings
might slightly change throughout the day based on a great variety
of environmental interference. To counter this, we can make use of
signal processing techniques, such as using a detrend filter, normal-
ization etc. To end up with a stable signal we can further reduce the

signal range, but that is not very desirable for proximity sensing.
Another issue is signal saturation, such as when the dielectric is in-
sufficiently great in size. This can quickly occur when the electrode
gets in contact with skin. However, the pressure and the size of the
area of the skin touching the electrode can still create unique signal
patterns. For instance, a big smile would touch the electrodes of the
glasses frame in a different way than when frowning. Finally the
electrical mass/ground capacitance the sensing circuit is connected
to determines the signal quality and signal range. For instance, a
155mAh battery would result in very low (signal-to-noise ratio)
SNR in comparison when plugging the sensing circuit to a station-
ary power supply. This limits CapSense for an actual mobile use,
when the user would walk around freely.

3.4 Untethered Mobile CapSense Solution
Within the scope of this research, it was our interest to investigate
a hardware configuration that can be truly mobile without being
tethered to an external ground and thus would be hardware-wise
self-contained. Once the capacitive sensing circuit is no longer
tethered to a stationary ground source, the sensitivity and signal-to-
noise ratio is substantially reduced making it hard to sense changes
invoked by facial expressions and head gestures. This is because the
capacitive coupling between the body and the electrodes becomes
so low that it gets lost in noisy sensor readings. Instead all other
types of EM-waves predominantly override the signal.

To overcome this, we investigated two different strategies enabling
us to receive meaningful sensor readings:
Opt. A : Amplifying the signal changes by the body. This can be done

by elevating the body’s potential, such as through injecting a
12V AC. This would create a dominant change in the sensor
readings.

Opt. B : Generating a sufficiently great electric field close to the face
and close to the electrodes, capable of impact from changes
through different facial and head gestures.

Although we attempted both options, we decided to pursue Option
B, as driving an electrical current through the skin might have some
negative, yet unexplored, long-term health effects. Also, literature
has somewhat demonstrated Option A, for example, in OmniTouch
[21] and SkinTrack [58].

Figure 2: The frame is 3D printed as we attached blue mod-
elling foam to it in order to improve wearing comfort. One
of the four sensing electrodes is a conductive glass coated
with an Indium Tin Oxide (ITE) layer.
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Figure 3: Displaying the raw data signals of six randomly selected gestures from a random user.

4 IMPLEMENTATION
4.1 Apparatus
We 3D-printed a modified model of an existing 3D specs model.
We enlarged the frame to maximize the surface area where we
can attach electrodes. The prototype was printed using a Fused
Deposition Modeling (FDM) printer. As the prototype is heavier
than an of-the-shelf pair of specs, we attached some soft modelling
clay to the frame that touches the skin for increased comfort. We
deployed four sensing electrodes to one of the sides (see Figure
2). Moreover, we attached a single electrode to the exterior of the
glasses frame to generate a small electric field (see Figure 4).

4.1.1 Field Generation: To generate an electric field, we use a res-
onant tank consisting of a 110pF capacitor and a 1mH inductor,
resulting in a resonant frequency around 480kHz. By feeding it with
a square wave from a microcontroller, we are able to generate an
AC voltage of around 80V p-p. This consumes ∼20mA and would
last for ∼19h with our 380mAh battery. Due to practical reasons,
we decided to place the electrode emitting the electric field opposite
the sensing electrodes placed on the outside of the glasses’ front
frame (see Figure 4). However, other variations, such as putting it
to the side are also feasible. Please note, this electric field carries a
very low load of energy. Even accidental touches would result in
a voltage drop to ∼1V as the frequency changes due to the body’s
resistance.

Figure 4: A large surface electrode attached to the front
frame generates an electric field surrounding it. The red
lines illustrate some electric field lines. Apparently, the elec-
tric field has a greater range (not shown in this limited illus-
tration), however, the amplitude strength quickly decreases.
With our sensing technology we could sense changes within
a radius of ∼5cm.

4.1.2 Sensing: This setup uses an altered version of the EarFS [36]
sensing circuit. The secondAMP (U1) is no longer required. Also, we
bridged C1 to bypass the high pass filter and removed C3 to receive
a wider spectrum of high frequencies. Further, we opened the INA’s
gain by setting R1 to almost 0 Ohm – we used a potentiometer
for flexibility. As the signal is strong enough to override ambient
noise and artifacts created from other body movements, such as
walking, we do not need to attach a reference electrode. Moreover,
we eliminated flying wires and integrated all electronics into a
custom SMD PCB. To increase clarification and to enable a straight
forward replication, we attached the schematics to the appendix.
Our custom board incorporates an Arduino (Microcontroller: Atmel
ATSAMD 21G18A). We use an RN42 Bluetooth 2.1 modem to stream
the sensor data in bursts to a computer storing the data by a Java
application. The entire prototype is powered by a 155mAh LiPo
battery and consumes ~60mA, which grants us a lifetime of ~2.5h.

4.1.3 Performance: As we generate a stable EM-field, the sensing
is not greatly irritated by taking off and putting on the glasses. Our
circuit is tweaked to be invariant to typical EM noise that surrounds
us. However, very close fields, such as wearing a big headset, can
cause interference. During the design of the prototype, we faced the
trade-off between the number of electrodes vs. large electrodes. Ap-
parently, a higher number of electrodes create a greater resolution,
however, since we are limited in space that the glasses offer, we
require to decrease the size of electrodes at the same time, which
results in a weaker signal. After long testing, we optimized our
setup for electrodes with 3-10 cm2. Throughout pilot studies, we
did not see significant performance differences in covering both
sides with electrodes as gestures are mainly symmetrical.

4.2 Study Design
To check the performance level, we invited 10 participants from
various backgrounds (2x Germans, 3x Sri Lankans, 2x Chinese, 1x
Singaporean, 1x Iranian, 1x Indian), aged between 21 and 36 years
(M = 29; SD = 4.6) and recorded their facial and head gestures. None
of the participants was familiar with a study of this type. All users
voluntarily participated and consented to provide their data. We
recorded a gesture set containing the following 12 gestures:

(a) chin-on-chest, (b) default, (c) eye-wink, (d) head-
back, (e) head-left, (f) head-right, (g) lift-eyebrows, (h)
open-mouth, (i) press-lips-together, (j) protrude-tongue,
(k) pull-eyebrows-together, and (l) smile.
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The study leader triggered the gesture recording after orally
commanding the participant to start execution. With 500Hz, sensor
data fills a 1024 array giving each gesture space of 2s. Each gesture
is picked up by four sensing electrodes. The participant was asked
to repeat each gesture 10 times. We did not pre-process the data and
calculated 46 state-of-the-art statistical and frequency-based fea-
tures commonly used in literature over the entire window of 1024
samples. This approach is part of a conventional machine learn-
ing pipeline that we followed. We were unable to not successfully
perform a leave-one-user-out cross-validation, because our data is
user-dependent since individual factors are strongly pronounced
(see discussion). Therefore, for each user, we built an independent
model, taking into consideration the individual physiology of users’
faces as well as the execution style of gestures that also differed
greatly across users.

4.3 Results
To build our machine learning model, we selected a RandomForest
(RF), as our previous studies determined this to be a suitable classi-
fier for our data. The RF auto-selects meaningful features, which
were: Median, geometricMean, minElement, maxElement, pairDiffer-
ence, Variance, and signalIntensity. We can see that statistical fea-
tures are predominant, also indicating no unwanted high-frequency
EM-noise impacting our data. Figure 3 depicts the raw signals dur-
ing gesture execution. As popular among related research, we ran
a 10-fold cross-validation, training the model with 9 instances and
testing against the remaining one and iterating this 10 times. The av-
erage accuracy across all users showed a true-positive recognition
of 89.6% (mean F1=.8956, 𝜎=.0605). A confusionmatrix, accumulated
and averaged across all users, is depicted in Figure 5.

a b c d e f g h i j k l <
92 1 2 0 0 0 3 1 1 0 0 0 a
1 95 1 0 0 0 1 0 0 0 1 1 b
2 3 90 2 0 0 1 0 0 0 1 1 c
0 0 0 95 0 1 1 0 1 1 1 0 d
0 0 0 1 93 4 1 0 0 0 1 0 e
0 0 0 1 2 94 1 0 0 2 0 0 f
2 0 1 0 0 3 86 2 0 2 3 1 g
0 0 1 0 1 0 5 84 2 2 3 2 h
1 0 0 1 0 0 3 5 84 2 1 3 i
1 0 1 1 0 1 4 3 1 84 0 4 j
1 1 0 1 0 2 0 2 1 0 92 0 k
0 1 0 0 0 1 0 5 4 2 1 86 l

Figure 5: Confusion Matrix showing true-positive rates and
confusions [in %] using a Random Forest (Average accuracy:
89.6%). The top 5 gestures (next to the default gesture) in-
clude: d) head-back, f) head-right, e) head-left, a) chin-on-
chest, and k) pull-eyebrows-together.

It became obvious that most confusions occurred around the
cluster of (h) open-mouth, (i) press-lips-together, and (j) protrude-
tongue. Amore reliable recognition than these facial expressions are
gestures that involve greater head movements, such as d) head-back,
f) head-right, and e) head-left. This is because head movements
invoke higher motion changes than facial expressions.

4.4 Discussion
4.4.1 Fine-tuning. Based on our experiments, a fine-tuning of the
sensing apparatus can provide higher accuracy for low-amplitude
movements as well. However, high-amplitude motion stemming
from head movements might not be distinguishable anymore, as the
signal would become saturated. A solution would be instrumenting
both sides of the glasses with two different configurations. One
would be as fine-grained to pick up eye-blinks and the other would
only pick up head movements.

4.4.2 Individual Physiology. Besides the individual gesture execu-
tion style, we also observed that the physiology of the participants’
faces have a major impact on the accuracy. For instance, partici-
pants demonstrating a rather flat face and small noses, which is
common amongst the Asian population, show better recognition
results. This is because the face is closer to the electrodes, mean-
ing they are touched more often when executing certain gestures,
resulting in more distinct signatures. In fact, the bottom electrode
constantly touches the cheek, which also contributes to a totally
different gesture pattern making generalizability across other indi-
viduals impossible. Training a successful model based on a single
user seems only to make sense when users have a matching face
shape and commonalities in gesture execution. A brief test between
two Sri Lankan participants showed a match of ~25% accuracy
among all 12 gestures and ~70% with 5 gestures.

4.4.3 Mobile Feasibility. During our exploration, we recognized
that using a second electrode generating an electrical field behind
the sensing electrode seems to provide more stable results than
previous capacitive sensing methods. Also, it was possible to walk
around without receiving great interference from other electrical
devices or artifacts from body movements. We believe this setup,
which is similar but not exactly like a shunt mode, to be very
promising for future research in mobile and wearable computing.

5 CONTRIBUTIONS, BENEFITS, &
LIMITATIONS

We and other researchers, such as Ekman and Friesen [13], see facial
gestures as providing a valuable source of information. Merely
using an ordinary pair of glasses can sense hidden information.
Previous advantages demonstrated in scientific literature, as well in
recent products, have shown that smart glasses are becoming more
important in wearable computing. In this section, we elaborate how
this paper contributes to the state-of-the-art, as we summarize the
resulting advantages and limitations of CapGlasses.

5.1 Contributions
In this paper, we explored a way of integrating capacitive sensing
for glasses and in a truly mobile manner, without requiring the need
to drive an electric voltage through the body. Although most works
can solely focus on exploring technology, others have a stronger
focus on creating social-acceptable solutions, or investigating the
applicability in truly mobile scenarios (in which users are walking
and interacting). With CapGlasses, our main focus is twofold; we
explored proximity sensing with CapSense for mobile use and we
explored how CapSense can be incorporated in a glasses frame,
which can be more unobtrusively hidden in a future specs product.
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Figure 6: Beneficial Use Cases: a) Very recently, BMW introduced its Intelligent Person Assistant [40], an assistive intelligence
that supports the driver in various ways, such as enabling a relaxation mode when the driver states to be stressed. Based on
facial expressions, a pair of smart glasses could automatically detect stress and when the driver is tired. Utilizing these infor-
mation can improve automated assistance and driving experience. b) The Wall Street Journal recently showed how China is
using Artificial Intelligence in classrooms [26] while pupils are equipped with head-worn EEG devices that measure concen-
tration and engagement. Using smart glasses to infers on task engagement based on facial expressions could be an alternative
solution being more inconspicuous. c) Back in 2011, Microsoft proposed the use of smart glasses in their Productivity Future
Vision [39]. Here explicit facial expressions, such as an eye wink or a headmovement could be used to interact with the device
enabling hands-free interaction and benefiting efficient multitasking.

5.2 Benefits
5.2.1 Glasses Form Factor. We consider utilizing a pair of glasses to
measure facial expressions and head gestures as an elegant solution.
Because a pair of glasses is not an additional sensing device and
already worn bymany users, it allows for the subtle implementation
of sensing technology. Since the frame and the glass itself offers
large surface area, we can implement area electrodes, which are
sensitive enough to sense any facial and headmovements. Similar to
a capacitive touchscreen, we can also utilise transparent electrodes.
Our prototype used Indium Tin Oxide electrodes, however, in mass
manufacturing a vapor deposition of electrodes may be favoured.
Moreover, these electrodes could be further separated to increase
resolution, as highlighted in Figure 1. Smaller surface electrodes,
however, will minimise sensing distance.

5.2.2 The Power of Facial Expressions. Facial gestures are ubiqui-
tous in everyday interactions. In mobile and everyday contexts, an
unobtrusive pair of glasses can not only provide safety benefits
by allowing the user to reflect on their current state, such as the
level of tiredness, as recently showcased by Tag et al. [50], but aid
in several other ways. Moreover, dangerous situations are often
characterized by pronounced facial gestures. Facial gestures are
useful in reflecting emotion, such as shock for example. Also, facial
data analysis can infer a user’s engagement in a task. In the future,
sensing facial gestures can enable enriched implicit interactions, as
well as explicit interactions, while tapping into vast reservoirs of
data humans naturally produce.

5.2.3 Use Cases. Sensing the user’s context is an essential aspect of
future assistive technology [12]. Context information includes the
mental and physical state, which can be inferred by facial expres-
sions. For example, an assistive system could increasingly support
the user when engaged in critical work tasks and activities, such as
driving a car (see Figure 6 - a). Moreover, such a system can assess
the user’s unease or the difficulty experienced when performing a
task (see Figure 6 - b). In a learning scenario, the difficulty could be
individually regulated to adjust to the user’s current performance
level. In most clinical settings, tracking the mood and stress of a

user is important. Currently, user’s are often required to track such
parameters at certain intervals manually. We envision a pair of
glasses recognizing these facial gestures automating this process.
At last, facial expressions and head gestures can be used to input
explicit commands that are hands-free, thus safe to use when on
the go, and enabling a more efficient multitasking (see Figure 6 - c).

5.3 Limitations
5.3.1 Unintentional Control. As facial gestures and head move-
ments occur naturally, utilising them for explicit control may trig-
ger significant false-positives. Context-aware interfaces must help
here to understand the user and to offer appropriate interaction
options at given times. Furthermore, training is required to utilise
these gestures for quick responses to a system notification. How-
ever, if successfully internalised, CapGlasses could enable Reflexive
Interaction [37], benefiting a reduced task interruption.

5.3.2 Reported Accuracy. Our prototype is unique in a way that it
is untethered, which is prone to suffer from lower accuracy com-
pared to CapSense tethered to an electrical mains ground. Still,
with our special setup we achieved accuracy rates of 89.58% for
12 gestures utilizing four channels covering only one side of the
face. However, we consider these rates as a theoretical accuracy
level, reflecting the performance under "laboratory conditions". We
would like to note that accuracy rates reported in this, as well as in
the majority of other research papers, barely reflect those in reality
when noise from causative (extrinsic & intrinsic), intermediate, and
deterministic factors occur. Thus accuracy rates, including ours, can
only be seen as a performance indicator. In practice, performance
will look different and is very likely to drop. To increase robustness,
we suggest a reduction of the gesture set to a lower number, using
numerous training sessions and a self-learning classifier.

5.3.3 Environmental Influences. The most competing technology
would be an optical sensing approach, such as demonstrated by
Masai et al. [30]. However, environmental factors substantially in-
fluence the sensor data, so their prototype is only working when the
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user does not angle their head in a different direction as light con-
ditions change. The feasibility in an actual mobile scenario is thus
compromised. Our prototype is not impacted by these issues. How-
ever, it is also impacted by other environmental influences, namely
where many electric devices emitting considerable EM-waves are
within the vicinity. Also, we observed that wearing headphones
has an impact on the sensor readings when using passive sensing.
Moreover, the signal may slightly fluctuate from day-to-day, de-
pending on a variety of factors, such as the user’s electrical charge
and neighbouring devices being switched on/off. Further, varying
humidity and dryness of the skin could influence the readings. In
particular, EOG, EMG, Bioaccustic, and Capacitive sensing is af-
fected by the constant change of our body. A long-term evaluation
of this effect in an interaction setting has been studied by Matthies
et al. [34].

5.3.4 Signal Quality and Mobility. The size of the electrode and
the extent of the electrical mass/ground capacitance of the power
source impacts the signal quality significantly. For instance, a 550
mAh battery demonstrates a substantial lower SNR, as well as
a decreased sensor range, compared to when it is plugged to a
stationary power supply. However, when plugged to a stationary
power supply, the mobility is apparently limit. To provide a truly
mobile solution without being tethered to mains ground / earth,
we suggest either enhancing the capacitive coupling between the
body and the sensing electrodes, such as by increasing the body’s
potential (charging the skin with a low AC voltage), or creating
a small electric field nearby the body and the electrode, such as
shown by our prototype.

6 CONCLUSION
Facial and head gestures are a natural way in which humans repre-
sent emotions. Being able to record such gestures may contribute
to a greater understanding of the human mental state, which could
assist with rehabilitation or used to augment human and computer
interactions. We were driven to search for a technical solution
that fulfils the requirements of being computationally inexpensive,
socially unobtrusive, applicable in a mobile context, and provid-
ing high accuracy for a reasonable number of gestures. With this
motivation in mind, we developed CapGlasses a pair of CapSense
glasses. To allow a straightforward replication of our prototype,
we provide a detailed documentation.As electrodes can be easily
manufactured into a pair of glasses, we believe our work will finally
set an impetus for a novel way of recognising gestures with future
smart glasses. Besides glasses our technology can be re-purposed
for any other type of wearable, such as wristband, footwear, etc.
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Figure 7: Simplified schematics of the sensing circuit (top) and signal emitting electrodes (bottom).
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